EngageME: Otizm Terapisi için Kişiselleştirilmiş Makine Öğrenmesi

Otizm Spektrum Bozukluğu (OSB), bugün dünya genelinde her 160 çocuktan birini etkilemektedir. OSB’li çocuklar, sosyal iletişim ve etkileşimlerde, kısıtlı ve tekrarlayıcı davranışlarda sürekli sorunlar yaşamaktadır. Bu sorunlar, kendi sosyo-duygusal yaşamları ve ailelerinin yaşamları için de ciddi zorluklar oluşturmakta. OSB’li çocukların sosyal becerilerini geliştirmelerine yardımcı olan, farklı tipte birçok otizm terapisi var.

Son zamanlarda, sosyal robotlar tedavi sırasında oynanan interaktif oyunlarda kullanılmakta. Bunun sebebi belki de, OSB’li çocukların onları, insan benzeri oldukları halde öngörülebilirlikleri ve tehditkar olmayan doğaları nedeniyle eğlenceli ve ilgi çekici bulmalarındandır. Bununla birlikte, bir sosyal robot ve bir çocuk arasında doğala yakın etkileşimi mümkün kılmak için, bu robotların, çocuğun davranışsal ipuçlarını öğrenmelerine ve tanımalarına, daha doğal ve ilgi çekici bir şekilde yanıt vermelerine olanak tanıyan bir tür sosyo-duygusal zeka ile donatılmış olmaları gerekir.

EngageME, OSB’li çocuklar için otizm tedavisinde insansı robotların (örneğin NAO) kullanımını araştırmaktadır. Bu teknoloji, derin öğrenmeyi temel alarak, etki ve katılımın otomatik ölçümü için kişiselleştirilmiş ve kültüre uyarlanmış modeller getiriyor. EngageMe’de, her çocuğun gerçek dünya terapi seansları sırasında kaydedilmiş çok modlu davranışsal ipuçlarını (yüz ifadeleri, baş pozisyonu, ses tonu, vokalizasyonlar, vücut ısısı, kalp atışı ve cilt iletimi dahil biyo-işaretler) analiz etmek için en gelişmiş veri işleme araçları kullanıldı. Bunlar, insan uzmanları tarafından sağlanan etki ve etkileşim puanlarıyla eşleştirildi ve robot algısı için kişiselleştirilmiş derin modelleri eğitmek için kullanıldı. Son olarak, bu modeller terapi seanslarından elde edilen yeni veriler üzerinde test edildi.

EngageME, otizm terapisi bağlamında, otizmli çocuklar arasındaki kültürel ve bireysel farklılıkları hesaba katarak, çocukların duygulanımlarını ve etkileşimlerini otomatik olarak yorumlayabilen bir robot algılama modülünün tasarlanması için, veri odaklı makine öğreniminin kullanıldığı ilk çalışmadır.

Bu çalışma Haziran 2018’de Science Robotics‘te yayınlandı.

Kaynak: MIT Media Lab

TRAI

Recent Posts

Anthropic, Claude’u iş akışının merkezine çekiyor.

Anthropic’in son günlerdeki hamleleri, üretken yapay zekanın değerinin artık tek bir sohbet penceresiyle ölçülmediğini gösteriyor.…

23 saat ago

İnsan Kaynaklarında Yapay Zeka Destekli Yeni Dönem

Dijitalleşmenin hız kazanmasıyla birlikte insan kaynakları süreçleri de köklü bir dönüşüm geçiriyor. Özellikle yapay zeka…

5 gün ago

İnsanlığın Yapay Zeka İle İmtihanı

Yapay Zeka, Genetik ve Yaşam Bilimlerinin Hızlanan Dansı Son 20–30 yılda, genetik ve yaşam bilimlerinde…

6 gün ago

101. TRAI Meet-Up’ta Blokzincirde Kurumsal Yapay Zeka Uygulamalarını Konuştuk

2017 yılından bu yana her ayın üçüncü çarşambası düzenlediğimiz TRAI Meet-Up serisinin 101’incisini 21 Ocak…

2 hafta ago

İlaç geliştirmede yapay zeka için ortak çerçeve: FDA ve EMA “iyi uygulama” ilkelerini yayımladı

Yapay zekanın en kritik vaatlerinden biri, AR-GE sürelerini kısaltmak ve klinik süreçleri daha verimli hale…

2 hafta ago

Birleşik Krallık’ta Telif Krizi: Yapay Zeka Eğitim Verileri İçin “Reset” Arayışı

Telif hakkı, üretken yapay zekanın en pahalı ve en belirsiz denklemine dönüştü: “Her şeyden eğit,…

2 hafta ago