EngageME: Otizm Terapisi için Kişiselleştirilmiş Makine Öğrenmesi

Otizm Spektrum Bozukluğu (OSB), bugün dünya genelinde her 160 çocuktan birini etkilemektedir. OSB’li çocuklar, sosyal iletişim ve etkileşimlerde, kısıtlı ve tekrarlayıcı davranışlarda sürekli sorunlar yaşamaktadır. Bu sorunlar, kendi sosyo-duygusal yaşamları ve ailelerinin yaşamları için de ciddi zorluklar oluşturmakta. OSB’li çocukların sosyal becerilerini geliştirmelerine yardımcı olan, farklı tipte birçok otizm terapisi var.

Son zamanlarda, sosyal robotlar tedavi sırasında oynanan interaktif oyunlarda kullanılmakta. Bunun sebebi belki de, OSB’li çocukların onları, insan benzeri oldukları halde öngörülebilirlikleri ve tehditkar olmayan doğaları nedeniyle eğlenceli ve ilgi çekici bulmalarındandır. Bununla birlikte, bir sosyal robot ve bir çocuk arasında doğala yakın etkileşimi mümkün kılmak için, bu robotların, çocuğun davranışsal ipuçlarını öğrenmelerine ve tanımalarına, daha doğal ve ilgi çekici bir şekilde yanıt vermelerine olanak tanıyan bir tür sosyo-duygusal zeka ile donatılmış olmaları gerekir.

EngageME, OSB’li çocuklar için otizm tedavisinde insansı robotların (örneğin NAO) kullanımını araştırmaktadır. Bu teknoloji, derin öğrenmeyi temel alarak, etki ve katılımın otomatik ölçümü için kişiselleştirilmiş ve kültüre uyarlanmış modeller getiriyor. EngageMe’de, her çocuğun gerçek dünya terapi seansları sırasında kaydedilmiş çok modlu davranışsal ipuçlarını (yüz ifadeleri, baş pozisyonu, ses tonu, vokalizasyonlar, vücut ısısı, kalp atışı ve cilt iletimi dahil biyo-işaretler) analiz etmek için en gelişmiş veri işleme araçları kullanıldı. Bunlar, insan uzmanları tarafından sağlanan etki ve etkileşim puanlarıyla eşleştirildi ve robot algısı için kişiselleştirilmiş derin modelleri eğitmek için kullanıldı. Son olarak, bu modeller terapi seanslarından elde edilen yeni veriler üzerinde test edildi.

EngageME, otizm terapisi bağlamında, otizmli çocuklar arasındaki kültürel ve bireysel farklılıkları hesaba katarak, çocukların duygulanımlarını ve etkileşimlerini otomatik olarak yorumlayabilen bir robot algılama modülünün tasarlanması için, veri odaklı makine öğreniminin kullanıldığı ilk çalışmadır.

Bu çalışma Haziran 2018’de Science Robotics‘te yayınlandı.

Kaynak: MIT Media Lab

TRAI

Recent Posts

Üyemiz Etiya, Gartner Magic Quadrant’ta

Türkiye merkezli küresel yazılım şirketi Etiya, yapay zeka alanında dikkat çekici bir başarıya imza attı.…

1 hafta ago

TIME100 AI 2025 açıklandı: “Yapay zekanın yönünü artık insanlar belirliyor”

TIME dergisi, yapay zeka alanında dünyanın en etkili 100 ismini üçüncü kez açıkladı. “TIME100 AI…

2 hafta ago

Zekanın Ötesi

İnsanoğlu pek çok şey keşfetti, icat etti. Ama sanırım daha önce bu kadar çok tartışılan,…

2 hafta ago

xAI, Grok 2.5’i Açık Kaynak Olarak Yayınladı

Elon Musk’ın yapay zeka girişimi xAI, Grok 2.5 modelini açık kaynak olarak paylaşarak sektörün dikkatini…

2 hafta ago

TRAI Yapay Zeka Risk Raporu 2025

Hazırladığımız "TRAI Yapay Zeka Risk Raporu”, yapay zekanın sunduğu fırsatların yanı sıra beraberinde getirdiği riskleri…

2 hafta ago

Microsoft AI CEO’sundan Kritik Uyarı: “Bilinçli Görünen Yapay Zeka Kapıda”

Microsoft AI CEO’su Mustafa Suleyman, kişisel blogunda yayımladığı “We must build AI for people; not…

3 hafta ago