25. TRAI Meet-Up’ında “Yapay Zeka’da Yeni Yaklaşımlar” Konuşuldu

Türkiye Yapay Zeka İnisiyatifi’nin düzenlediği “Yapay Zeka’da Yeni Yaklaşımlar” konulu 25.  TRAI Meet-Up İTÜ Arı-3’te gerçekleştirildi.

İlk konuşmacımız Miletos’un CEO’su Berkin Malkoç oldu. Yapay zeka projelerinin Gerçek hayatta başarıya ulaşabilmesi için ilgili kıstaslar ve yaklaşımlardan bahsetti. Konuşmada, gerçek hayat yapay zeka uygulamalarında başarıya giden yolun, araştırmaların hemen her zaman odağını oluşturan doğruluk (“accuracy”) yanında bir takım teknik kıstaslardaki başarıdan ve ayrıca doğru organizasyonel hazırlıktan geçtiği vurgulandı. Teknik açıdan, yapay zeka uygulamalarının başarım ölçümünü doğruluk-hız-güvenilirlik üçgeninde ele almak ve eldeki probleme en baştan itibaren bu perspektifle yaklaşmak gereğinden bahsedildi. Organizasyonel açıdan başarı ile başarısızlık arasındaki farkı belirleyen faktörler ise, verinin akışı ve niteliğinin iyi yönetilmesi ile başlayan, uygulamadan faydalanmaya olanak sağlayacak değişim yönetiminin gerçekleştirilmesine doğru uzanmakta olduğu ifade edildi.

Diğer konuşmacımız, Özyeğin Üniversitesi finansal mühendislik merkezinin kurucusu Levent Güntay derin öğrenme ile finansal piyasa riski hesaplamalarındaki gelişmelerden bahsetti.

Çalışmalarda finansal piyasa riskini derin öğrenen ağlar ile modellemekte. Piyasa riskinin, bir yatırım aracının fiyatının herhangi bir dönemde düşme miktarının ve olasılığının modellenmesi olduğu belirtildi. Piyasa riskinin doğru şekilde modellenmesi ve hesaplanması bankalar ve portföy yönetim şirketleri için risk ve sermaye yönetimi açısından öneminden bahsedildi. Çalışmalarda piyasa riskinin modellenmesi için Üretici Çekişmeli Ağlar (Generative Adversarial Networks, GAN) kullanıldığı paylaşıldı. Bu yapıda “Üretici Ağ” devamlı yeni rasgele piyasa şokları üretirken, “Ayırt Edici Ağ” ise gerçek ve üretilmiş sahte piyasa şoklarını ayırt etmeyi öğrenir. “Ayırt Edici Ağ” modeli kullanılarak elde edilen piyasa riski hesaplamalarının konvansiyonel modellere göre daha yüksek ve daha güvenilir risk tahminleri oluşturduğunu tespit etiklerini paylaştılar.

Son olarak Jetlink firmasından Veli Demir doğal dil işleme’de ve chatbotlarda uygulanmaya başlanan hibrit yaklaşımdan söz etti. Chatbotun ihtiyacı olan yapay zekayı sağlamak için Lineer Arama, Makine Öğrenmesi ve Derin Öğrenme olmak üzere 3 yöntemin birlikte kullanılabildiği bir altyapı sunarak eğitimcilerine ve kullanıcılarına esneklik sağlanmış. Bu sayede sistem son kullanıcıya en hızlı ve en doğru cevapları dönebiliyor, en dip noktalardaki istekleri karşılayabiliyor.

Gelecek etkinlik: TRAI Meet-Up #26 Üretim ve Yapay Zekâ

TRAI

Recent Posts

Üyemiz Etiya, Gartner Magic Quadrant’ta

Türkiye merkezli küresel yazılım şirketi Etiya, yapay zeka alanında dikkat çekici bir başarıya imza attı.…

1 hafta ago

TIME100 AI 2025 açıklandı: “Yapay zekanın yönünü artık insanlar belirliyor”

TIME dergisi, yapay zeka alanında dünyanın en etkili 100 ismini üçüncü kez açıkladı. “TIME100 AI…

2 hafta ago

Zekanın Ötesi

İnsanoğlu pek çok şey keşfetti, icat etti. Ama sanırım daha önce bu kadar çok tartışılan,…

3 hafta ago

xAI, Grok 2.5’i Açık Kaynak Olarak Yayınladı

Elon Musk’ın yapay zeka girişimi xAI, Grok 2.5 modelini açık kaynak olarak paylaşarak sektörün dikkatini…

3 hafta ago

TRAI Yapay Zeka Risk Raporu 2025

Hazırladığımız "TRAI Yapay Zeka Risk Raporu”, yapay zekanın sunduğu fırsatların yanı sıra beraberinde getirdiği riskleri…

3 hafta ago

Microsoft AI CEO’sundan Kritik Uyarı: “Bilinçli Görünen Yapay Zeka Kapıda”

Microsoft AI CEO’su Mustafa Suleyman, kişisel blogunda yayımladığı “We must build AI for people; not…

3 hafta ago