25. TRAI Meet-Up’ında “Yapay Zeka’da Yeni Yaklaşımlar” Konuşuldu

Türkiye Yapay Zeka İnisiyatifi’nin düzenlediği “Yapay Zeka’da Yeni Yaklaşımlar” konulu 25.  TRAI Meet-Up İTÜ Arı-3’te gerçekleştirildi.

İlk konuşmacımız Miletos’un CEO’su Berkin Malkoç oldu. Yapay zeka projelerinin Gerçek hayatta başarıya ulaşabilmesi için ilgili kıstaslar ve yaklaşımlardan bahsetti. Konuşmada, gerçek hayat yapay zeka uygulamalarında başarıya giden yolun, araştırmaların hemen her zaman odağını oluşturan doğruluk (“accuracy”) yanında bir takım teknik kıstaslardaki başarıdan ve ayrıca doğru organizasyonel hazırlıktan geçtiği vurgulandı. Teknik açıdan, yapay zeka uygulamalarının başarım ölçümünü doğruluk-hız-güvenilirlik üçgeninde ele almak ve eldeki probleme en baştan itibaren bu perspektifle yaklaşmak gereğinden bahsedildi. Organizasyonel açıdan başarı ile başarısızlık arasındaki farkı belirleyen faktörler ise, verinin akışı ve niteliğinin iyi yönetilmesi ile başlayan, uygulamadan faydalanmaya olanak sağlayacak değişim yönetiminin gerçekleştirilmesine doğru uzanmakta olduğu ifade edildi.

Diğer konuşmacımız, Özyeğin Üniversitesi finansal mühendislik merkezinin kurucusu Levent Güntay derin öğrenme ile finansal piyasa riski hesaplamalarındaki gelişmelerden bahsetti.

Çalışmalarda finansal piyasa riskini derin öğrenen ağlar ile modellemekte. Piyasa riskinin, bir yatırım aracının fiyatının herhangi bir dönemde düşme miktarının ve olasılığının modellenmesi olduğu belirtildi. Piyasa riskinin doğru şekilde modellenmesi ve hesaplanması bankalar ve portföy yönetim şirketleri için risk ve sermaye yönetimi açısından öneminden bahsedildi. Çalışmalarda piyasa riskinin modellenmesi için Üretici Çekişmeli Ağlar (Generative Adversarial Networks, GAN) kullanıldığı paylaşıldı. Bu yapıda “Üretici Ağ” devamlı yeni rasgele piyasa şokları üretirken, “Ayırt Edici Ağ” ise gerçek ve üretilmiş sahte piyasa şoklarını ayırt etmeyi öğrenir. “Ayırt Edici Ağ” modeli kullanılarak elde edilen piyasa riski hesaplamalarının konvansiyonel modellere göre daha yüksek ve daha güvenilir risk tahminleri oluşturduğunu tespit etiklerini paylaştılar.

Son olarak Jetlink firmasından Veli Demir doğal dil işleme’de ve chatbotlarda uygulanmaya başlanan hibrit yaklaşımdan söz etti. Chatbotun ihtiyacı olan yapay zekayı sağlamak için Lineer Arama, Makine Öğrenmesi ve Derin Öğrenme olmak üzere 3 yöntemin birlikte kullanılabildiği bir altyapı sunarak eğitimcilerine ve kullanıcılarına esneklik sağlanmış. Bu sayede sistem son kullanıcıya en hızlı ve en doğru cevapları dönebiliyor, en dip noktalardaki istekleri karşılayabiliyor.

Gelecek etkinlik: TRAI Meet-Up #26 Üretim ve Yapay Zekâ

TRAI

Recent Posts

Meta, Yapay Zekada Yeni Bir Dönemi Başlatıyor

Meta CEO’su Mark Zuckerberg, 30 Temmuz 2025 tarihinde yayımladığı açık mektup ile şirketin yeni nesil…

3 saat ago

Yapay Zeka Kullanmayanlar İşini Kaybedecek

Yapay Zeka Artık Bir Tercih Değil, Zorunluluk Çip teknolojisinin öncüsü Nvidia’nın kurucusu ve CEO’su Jensen…

2 gün ago

Yapay Zeka ile Müşteri Hizmetlerinde Yeni Dönem: Virtual Voice Bridge

Günümüzün hızla dijitalleşen dünyasında müşteri hizmetleri, yalnızca bir destek hattı olmaktan çıkıp markaların en kritik…

3 gün ago

95. TRAI Meet-Up’ta Yapay Zeka Altyapıları Konuşuldu

2017 yılından bu yana her ayın üçüncü çarşamba akşamı düzenlediğimiz TRAI Meet-Up serisinin 95’incisi, 23…

1 hafta ago

NTT DATA, SAP Geliştirme Süreçlerini Yapay Zeka ile Yeniden Tanımlıyor

Standart entegrasyonların ötesine geçen, projeye özgü özel SAP geliştirmelerinin diğer sistemlerle entegrasyonu genellikle daha karmaşık…

1 hafta ago

OpenAI, ChatGPT Agent’ı tanıttı

OpenAI, ChatGPT’yi görevleri kullanıcı adına yerine getirebilen bir yapay zeka asistanına dönüştüren yeni nesil bir…

2 hafta ago