Makine Öğrenimi İle “Yıldırım” Tahmini

Yıldırımlar, doğanın en yıkıcı güçlerinden biri olmasının yanında önceden tahmin edilmesi de bir o kadar zor. ABD’deki Washington Üniversitesi tarafından yürütülen yeni bir araştırma, makine öğreniminin yıldırımları önceden tahmin etmek için kullanılabileceğini gösteriyor.

Daha doğru yıldırım tahminlerinin yapılması, potansiyel orman yangınları veya yıldırım sonucu oluşabilecek benzeri tehditler için önceden tedbir almaya veya daha doğru iklim modelleri oluşturmaya yardımcı olabilir.

“Makine öğrenimini kullanabileceğimiz en iyi alanlar aslında henüz tam olarak keşfedilmemiş olanlar. Ve atmosfer bilimleri alanında hala tam olarak anlaşılamayan konu ise Yıldırımlar.” diye açıklıyor UW Atmosfer Bilimleri Doçenti Daehyun Kim. “Bildiğimiz kadarıyla, çalışmamız, makine öğrenimi algoritmalarının yıldırım için kullanılabileceğini gösteren ilk çalışma.” 

Yeni teknik, hava durumu tahminlerini geçmiş yıldırımların analizlerine dayanan bir makine öğrenimi algoritmasıyla birleştiriyor. 13 Aralık’ta Amerikan Jeofizik Birliği’nin sonbahar toplantısında sunulan hibrit yöntem, önde gelen mevcut teknikten iki gün önce güneydoğu ABD’de meydana gelecek yıldırım tahmininde bulunabiliyor.

Solda gözlenen yıldırım yoğunluğu, sağda ise makine öğrenimi ile öngörülen yıldırım yoğunluğu. Daehyun Kim / Washington Üniversitesi. Harita: Rebecca Gourley/Washington Üniversitesi

Kasırga ve Dolu Fırtınası için Yeni Makine Öğrenimi

Atmosfer bilimlerinde UW doktorası yapan Wei-Yi Cheng, “Bu yeni çalışma, fırtına gibi şiddetli hava olayı tahminlerinin makine öğrenimine dayalı yöntemler kullanılarak geliştirilebileceğini gösteriyor” dedi. “Bu keşif kasırga veya dolu fırtınası gibi diğer şiddetli hava olayları için yeni makine öğrenimi yöntemlerinin bulunmasının önünü açıyor.” diye de ekledi.

Araştırmacılar sistemi 2010’dan 2016’ya kadar yıldırım verileriyle eğitti. Bilgisayarın hava durumu değişkenleri ile yıldırım düşmesi arasındaki ilişkiyi keşfetmesi sağladı. Daha sonra, AI destekli teknik ve mevcut fizik tabanlı yöntemin her ikisini de değerlendirmek ve karşılaştırmak için 2017’den 2019’a kadar olan gerçek yıldırım gözlemlerini kullanması sağlandı.

Yeni yöntem, ABD’nin güneydoğusu gibi çok fazla yıldırım düşen yerlerde mevcut yöntemden yaklaşık iki gün önce aynı beceriyle doğru yıldırım tahmini yapabildi. Bu yeni yöntem tüm ABD’deki verilerle beslendiğinden, şu an için performansı yıldırımın daha az yaygın olduğu yerler için o kadar da doğru değil.

Daha fazla bilgi için tıklayınız.

 

 

Fatma Nur Yokuş

Recent Posts

Üyemiz Etiya, Gartner Magic Quadrant’ta

Türkiye merkezli küresel yazılım şirketi Etiya, yapay zeka alanında dikkat çekici bir başarıya imza attı.…

1 hafta ago

TIME100 AI 2025 açıklandı: “Yapay zekanın yönünü artık insanlar belirliyor”

TIME dergisi, yapay zeka alanında dünyanın en etkili 100 ismini üçüncü kez açıkladı. “TIME100 AI…

2 hafta ago

Zekanın Ötesi

İnsanoğlu pek çok şey keşfetti, icat etti. Ama sanırım daha önce bu kadar çok tartışılan,…

2 hafta ago

xAI, Grok 2.5’i Açık Kaynak Olarak Yayınladı

Elon Musk’ın yapay zeka girişimi xAI, Grok 2.5 modelini açık kaynak olarak paylaşarak sektörün dikkatini…

2 hafta ago

TRAI Yapay Zeka Risk Raporu 2025

Hazırladığımız "TRAI Yapay Zeka Risk Raporu”, yapay zekanın sunduğu fırsatların yanı sıra beraberinde getirdiği riskleri…

2 hafta ago

Microsoft AI CEO’sundan Kritik Uyarı: “Bilinçli Görünen Yapay Zeka Kapıda”

Microsoft AI CEO’su Mustafa Suleyman, kişisel blogunda yayımladığı “We must build AI for people; not…

3 hafta ago