Categories: Haberler

Akıllı Telefonlar Gerçek Zamanlı 3D Hologram Oluşturabilecek

Dünyanın en prestijli mühendislik ve teknoloji okullarından ABD’deki Massachusetts Teknoloji Enstitüsü (MIT) araştırmacıları, “Derin öğrenme” yöntemi kullanarak anında hologram oluşturmanın yolunu bulduklarını açıkladı. “Derin öğrenme” sayesinde cep telefonlarından bile 3D hologram üretilebilecek. Tensör holografisi adı verilen bu yeni yöntem, sanal gerçeklik, 3 boyutlu (3D) baskı, tıbbi görüntüleme ve daha fazlası için hologramların oluşturulmasını sağlayabilecek.

3D görüntüleme ve sanal gerçeklik bu kadar ünlü olmasına rağmen henüz hayatımızda göremememizin sebebi bizi hasta hissettirebilmesidir. 3 boyut yanılsamasını yaşarken 2 boyutlu bir ekrana bakıyor olduğumuzdan, bulantı ve göz yorgunluğu ortaya çıkabiliyor. Ancak hologram böyle değildir. Hologramlar, izleyicinin konumuna göre değişen bir perspektif sunuyor ve gözün odak derinliğini dönüşümlü olarak ön plana ve arka plana odaklamak için ayarlamasına izin veriyor.

Bunun daha önce yapılamamasının sebebi, geleneksel olarak fizik simülasyonlarının kullanılması ve bu uygulamaların da ancak süper bilgisayarlarla çalışabiliyor olmasıydı. Ancak şimdi sahip olduğumuz derin öğrenme yöntemiyle birlikte, çok basit cihazlarda bile hologramları çalıştırmamız mümkün görünüyor.

Konvolüsyonel Sinir Ağı Tasarlandı

Ekip, insanların görsel bilgiyi nasıl işlediğini kabaca taklit etmek için eğitilebilir bir tensör zinciri kullanan “konvolüsyonel sinir ağı” (CNN) tasarladı. Bir sinir ağını eğitmek için büyük, yüksek kaliteli bir veri kümesi gerektirir- ki bu daha önce 3D hologramlar için mevcut değildi. Ekip, bilgisayar tarafından oluşturulan 4.000 çift görüntüden oluşan özel bir veritabanı oluşturdu. Her çift görüntü -her bir piksel için renk ve derinlik bilgileri de dahil olmak üzere- bir resme karşılık gelen hologram ile eşleşti.

Araştırmacılar, yeni bir veritabanında hologramlar oluşturmak için, karmaşık ve değişken şekil ve renklere sahip sahneler kullandılar. Piksel derinliği arka plandan ön plana eşit olarak dağıttılar ve tıkanıklığı çözebilmek için yeni bir fizik tabanlı hesaplama seti kullandılar. Bu yaklaşım “fotogerçekçi” eğitim verileri (training data) ile sonuçlandı. Sonra, yapay zeka öğrenmeye başladı ve algoritma işe yaradı! Projenin başındaki takımda bulunan Wojciech Matusik konuyla ilgili “Ne kadar iyi bir sonuç aldığımıza biz de şaşırdık. Sinir ağlarının bu görev için doğduğunu düşünüyoruz.” açıklaması yaptı.

Kaynak: Science Daily

TRAI

Recent Posts

Gemini’dan Yapay Zeka Sohbetlerine “Hafıza ve Gizlilik” Ayarı

Google, AI destekli sohbet asistanı Gemini’ye kişisel bağlam (personal context) özelliği ekledi. Bu sayede kullanıcı…

4 gün ago

Perplexity AI, Google Chrome’u Satın Alma Teklifi Verdi

Perplexity AI, Google Chrome tarayıcısını 34,5 milyar dolara satın almak için bir teklif sundu. Bu…

5 gün ago

OpenAI GPT-5’i Kullanıma Açtı

OpenAI, 7 Ağustos 2025'te GPT-5 modelini resmen tanıttı ve kullanıma sundu. Bu yeni model, önceki…

2 hafta ago

Fal.ai, 1.5 Milyar Dolar Değerlemeyle Unicorn Oldu

Türk girişimciler Burkay Gür ve Görkem Yurtseven tarafından kurulan Fal.ai, son yatırım turunda 125 milyon…

3 hafta ago

Meta, Yapay Zekada Yeni Bir Dönemi Başlatıyor

Meta CEO’su Mark Zuckerberg, 30 Temmuz 2025 tarihinde yayımladığı açık mektup ile şirketin yeni nesil…

3 hafta ago

Yapay Zeka Kullanmayanlar İşini Kaybedecek

Yapay Zeka Artık Bir Tercih Değil, Zorunluluk Çip teknolojisinin öncüsü Nvidia’nın kurucusu ve CEO’su Jensen…

3 hafta ago