Kategori: Haberler

Akıllı Telefonlar Gerçek Zamanlı 3D Hologram Oluşturabilecek

Dünyanın en prestijli mühendislik ve teknoloji okullarından ABD’deki Massachusetts Teknoloji Enstitüsü (MIT) araştırmacıları, “Derin öğrenme” yöntemi kullanarak anında hologram oluşturmanın yolunu bulduklarını açıkladı. “Derin öğrenme” sayesinde cep telefonlarından bile 3D hologram üretilebilecek. Tensör holografisi adı verilen bu yeni yöntem, sanal gerçeklik, 3 boyutlu (3D) baskı, tıbbi görüntüleme ve daha fazlası için hologramların oluşturulmasını sağlayabilecek.

3D görüntüleme ve sanal gerçeklik bu kadar ünlü olmasına rağmen henüz hayatımızda göremememizin sebebi bizi hasta hissettirebilmesidir. 3 boyut yanılsamasını yaşarken 2 boyutlu bir ekrana bakıyor olduğumuzdan, bulantı ve göz yorgunluğu ortaya çıkabiliyor. Ancak hologram böyle değildir. Hologramlar, izleyicinin konumuna göre değişen bir perspektif sunuyor ve gözün odak derinliğini dönüşümlü olarak ön plana ve arka plana odaklamak için ayarlamasına izin veriyor.

Bunun daha önce yapılamamasının sebebi, geleneksel olarak fizik simülasyonlarının kullanılması ve bu uygulamaların da ancak süper bilgisayarlarla çalışabiliyor olmasıydı. Ancak şimdi sahip olduğumuz derin öğrenme yöntemiyle birlikte, çok basit cihazlarda bile hologramları çalıştırmamız mümkün görünüyor.

Konvolüsyonel Sinir Ağı Tasarlandı

Ekip, insanların görsel bilgiyi nasıl işlediğini kabaca taklit etmek için eğitilebilir bir tensör zinciri kullanan “konvolüsyonel sinir ağı” (CNN) tasarladı. Bir sinir ağını eğitmek için büyük, yüksek kaliteli bir veri kümesi gerektirir- ki bu daha önce 3D hologramlar için mevcut değildi. Ekip, bilgisayar tarafından oluşturulan 4.000 çift görüntüden oluşan özel bir veritabanı oluşturdu. Her çift görüntü -her bir piksel için renk ve derinlik bilgileri de dahil olmak üzere- bir resme karşılık gelen hologram ile eşleşti.

Araştırmacılar, yeni bir veritabanında hologramlar oluşturmak için, karmaşık ve değişken şekil ve renklere sahip sahneler kullandılar. Piksel derinliği arka plandan ön plana eşit olarak dağıttılar ve tıkanıklığı çözebilmek için yeni bir fizik tabanlı hesaplama seti kullandılar. Bu yaklaşım “fotogerçekçi” eğitim verileri (training data) ile sonuçlandı. Sonra, yapay zeka öğrenmeye başladı ve algoritma işe yaradı! Projenin başındaki takımda bulunan Wojciech Matusik konuyla ilgili “Ne kadar iyi bir sonuç aldığımıza biz de şaşırdık. Sinir ağlarının bu görev için doğduğunu düşünüyoruz.” açıklaması yaptı.

Kaynak: Science Daily

Paylaş
TRAI

Son Gönderiler

Yapay Zeka Turing Testini Geçti

Yapay zeka teknolojisinde tarihi bir dönüm noktası yaşandı. OpenAI tarafından geliştirilen GPT-4.5 ve Meta’nın LLaMa-3.1… Devamı

8 saat Önce

91. TRAI Meet-Up’ta Üretken Yapay Zeka ve YZ Ajanları Konusu Konuşuldu

91. TRAI Meet-Up: 2017 yılından bu yana gerçekleştirilen TRAI Meet-Up etkinlikleri, Türkiye'nin yapay zeka ekosisteminin… Devamı

2 hafta Önce

Tek Bir GPU veya TPU Üzerinde Çalışabilen Gemma 3 Tanıtıldı

Google, yapay zeka alanındaki en son yeniliği olan Gemma 3 modelini resmi olarak duyurdu. Tek… Devamı

3 hafta Önce

Dünyanın İlk Sentetik Biyolojik Zekası CL1

Günümüz yapay zeka teknolojilerinin en büyük sınırlamalarından biri, enerji tüketimi ve öğrenme hızı gibi faktörlerdir.… Devamı

3 hafta Önce

Çin’in Kuantum Hesaplamadaki Yeni Atılımı: Zuchongzhi-3, Google’ı Geride Bıraktı

Çin’in Kuantum Hesaplamadaki Yeni Atılımı: Zuchongzhi-3, Google’ı Geride Bıraktı Çin, kuantum hesaplama alanında önemli bir… Devamı

3 hafta Önce

Çin’den Otonom Yapay Zeka Ajanı Manus

Çinli teknoloji girişimi Butterfly Effect tarafından geliştirilen Manus AI, tamamen otonom bir yapay zeka ajanı… Devamı

3 hafta Önce